Differential Equations

Initial Value Problems<!-- --> | Differential Equations

Initial Value Problems

Sharan Sajiv Menon - September 5th, 2021


Initial value problems are problems is an ordinary differential equation with an initial condition which specifies the value of the unknown function at a given point in the domain.

Solved Problems

Problem 1: Find the function y1(t)y_1(t)​​​​ which is the solution of 9y48y+28y=09y''-48y'+28y=0​​​​ with initial conditions y1(0)=1y_1(0)=1​​​ and y1(0)=0y_1'(0)=0​​​​

Solution 1

  • Step 1: Find general solution first. Solve auxilary equation: 9m248m+28=09m^2-48m+28=0​​​ , Solutions are 143\frac{14}{3}​​​ and 23\frac{2}{3}​​​​

  • Step 2: Solution will look like y1(t)=C1e2t/3C2e14t/3y_1(t) = C_1e^{2t/3}-C_2e^{14t/3}​​​​

  • Step 3: Find y1(t)y_1'(t): 23C1e2t/3143C2e14t/3\frac{2}{3}C_1e^{2t/3} - \frac{14}{3}C_2e^{14t/3}

  • Step 4: y1(0)=1y_1(0)=1​​​, so C1C2=1C_1 - C_2=1​​​​​ and y1(0)y_1'(0)​, so 23C1143C2=0\frac{2}{3}C_1 - \frac{14}{3}C_2=0

  • Step 5: Solve system of equations [^1], use any method:

    [1123143]1[10]\begin{bmatrix} 1 && -1 \\ \frac{2}{3} && \frac{14}{3}\end{bmatrix}^{-1}\begin{bmatrix} 1 \\ 0\end{bmatrix}

    solving this gives C1=76C_1=\frac{7}{6}​ and C2=16C_2=\frac{1}{6}

  • Answer is (7/6)e2t/3(1/6)e14t/3(7/6)e^{2t/3}-(1/6)e^{14t/3}​​​​

Created by Sharan Sajiv Menon, © 2022